

1

1. OVERVIEW

Subject area Object-Oriented Programming

Degree Bachelor's Degree in Data Science

School/Faculty Faculty of Science, Engineering and Design

Year First

ECTS 6 ECTS

Type Core

Language(s) Spanish

Delivery Mode
On campus

Semester Second semester

2. INTRODUCTION

Data science has greater influence on our society by the day. Therefore, Object-Oriented Programming is
aimed at providing a global impression of the most advanced programming techniques used in data
analysis. This subject teaches students about design, development, monitoring and testing, as well as how
to solve data extraction, transformation and load problems on a business level. This, all the while,
following code quality and good practices.

Students learn how to design software which can be applied to different top-level programming languages,
while always focusing on data management and processing. This subject will give students an overall view
of data programming which will serve as a base for other subjects in the Bachelor's Degree in Data Science.

3. SKILLS AND LEARNING OUTCOMES

Basic skills (CB, by the acronym in Spanish):

• CB1. Students have shown their knowledge and understanding of a study area originating from
general secondary school education, and are usually at the level where, with the support of more
advanced textbooks, they may also demonstrate awareness of the latest developments in their
field of study.

• CB2. Students can apply their knowledge to their work or vocation in a professional manner and
possess the skills which are usually evident through the forming and defending of opinions and
resolving problems within their study area.
CB3. Students must have the ability to gather and interpret relevant data (usually within their
study area) to form opinions which include reflecting on relevant social, scientific or ethical
matters.

Cross-curricular skills (CT, by the acronym in Spanish):

• CT02. Independent learning: skills for choosing strategies to search, analyse, evaluate and
manage information from different sources, as well as to independently learn and put into
practice what has been learnt.

2

• CT04. Written/spoken communication: ability to communicate and gather information, ideas,
opinions and viewpoints to understand and be able to act, spoken through words or gestures or
written through words and/or graphic elements.

• CT05. Analysis and problem-solving: be able to critically assess information, break down complex
situations, identify patterns and consider different alternatives, approaches and perspectives in
order to find the best solutions and effective negotiations.

Specific skills (CE, by the acronym in Spanish):

• CE3. Knowledge of the core principles and applications of software development and databases.

• CE4. Ability to successfully apply data type models and algorithms to create solutions to problems
in the data science field.

• CE5. Ability to design, implement, gather, store and exploit databases and database management
systems to create solutions to problems in the data science field.

Learning outcomes (RA, by the acronym in Spanish):

• Develop algorithmic thinking. Transfer a problem into a sequence of actions to solve.

• Design and implement solutions to problems of medium-level complexity using databases
(structured, semi-structured, non-structured), data structures and object-oriented
programming.

• Use programming environments to compile, link and execute programs, as well as identify and
correct errors in each stage.

• Suitably document the designs, as well as the introduction of comments in the code to ease
understanding and further use of the software created.

Skills Learning outcomes

CB1
Develop algorithmic thinking. Transfer a problem into a sequence of
actions to solve.

Use programming environments to compile, link and execute
programs, as well as identify and correct errors in each stage.

CB2
Develop algorithmic thinking. Transfer a problem into a sequence of
actions to solve.

Design and implement solutions to problems of medium-level
complexity using databases (structured, semi-structured, non-
structured), data structures and object-oriented programming.

CT02
Develop algorithmic thinking. Transfer a problem into a sequence of
actions to solve.

Use programming environments to compile, link and execute
programs, as well as identify and correct errors in each stage.

CT04
Suitably document the designs, as well as the introduction of
comments in the code to ease understanding and further use of the
software created.

3

CT05
Design and implement solutions to problems of medium-level
complexity using databases (structured, semi-structured, non-
structured), data structures and object-oriented programming.

CE3
Develop algorithmic thinking. Transfer a problem into a sequence of
actions to solve.

CE4
Design and implement solutions to problems of medium-level
complexity using databases (structured, semi-structured, non-
structured), data structures and object-oriented programming.

CE5
Design and implement solutions to problems of medium-level
complexity using databases (structured, semi-structured, non-
structured), data structures and object-oriented programming.

Use programming environments to compile, link and execute
programs, as well as identify and correct errors in each stage.

4. CONTENTS

1. Implementation of classes Attributes, constructors, methods

2. Inheritance, collections and advanced class design

3. Overload and rewriting

4. Abstract classes, polymorphism and interfaces

5. Quality assurance and design patterns Graphical interfaces.

5. TEACHING/LEARNING METHODS

The types of teaching/learning methods are as follows:

• Collaborative learning: students learn to work with other people (colleagues and professors) to
find creative, comprehensive and constructive solutions to questions and problems that arise
from the given case studies, using relevant knowledge and available resources in relation to
each subject.

• Problem-based learning: students face problems they must solve either working as a team or
independently.

• Master Lecture: presentations by the professor using the appropriate technological tools to
facilitate understanding of the subject matter.

• Directed academic activities: more independent tasks (individual or in groups), involving search
for information, written summaries, debates and public defence of work.

6. LEARNING ACTIVITIES

4

The types of learning activities, plus the amount of time spent on each activity, are as follows:

On campus:

Learning activity Number of hours

Master classes 44

Problem solving and case studies 10

Laboratory work (exercises led by the teacher) 15

Knowledge tests 4

Independent working 50

Tutorials 6

Practical work at home 21

TOTAL 150

7. ASSESSMENT

The assessment methods, plus their weighting in the final grade for the subject area, are as follows:

On campus:

Assessment system Weighting

Global knowledge test. 40%

Knowledge test. 25%

Practical 1 15%

Practical 2 (presentation and final submission) 20%

Total 100%

Global knowledge test. 40%

On the Virtual Campus, when you open the subject area, you can see all the details of your assessment
activities and the deadlines and assessment procedures for each activity.

8. BIBLIOGRAPHY

The reference publication to accompany this subject area is:

• Boucheny Vincent (2021) Aprende la Programación Orientada a Objetos con el lenguaje Python

The recommended bibliography is indicated below:

5

• Pagés Mariano (2019). El Paradigma de Objetos a tu Alcance: Aprendiendo a resolver
problemas, pensando en objetos

• Cerrada, J. A. y Collado, M. E. (2010). Fundamentos de Programación. Madrid: Editorial
Universitaria Ramón Areces.

• Dixit, J. B. (2009). Computer Fundamentals and Programming in C. New Delhi: Laxmi
Publications

• Jiménez, M. y Otero, B. (2013). Fundamentos de ordenadores Barcelona: Editorial Universitat
Politècnica de Catalunya.

• Steven F. (2021) . Python Object-Oriented Programming: Build robust and maintainable object-
oriented Python applications and libraries, 4th Edition

• Juganaru, M. (2014). Introducción a la programación. Ciudad de México: Grupo Editorial Patria.

• Peña, R. (2005). Diseño de Programas: Formalismo y Abstracción. Madrid: Pearson.

• Rodríguez, M. A. (1991). Metodología de programación a través de pseudocódigo. Madrid:
McGraw-Hill.

• Romney, M. B. y Steinbart, P. J. (2011). Accounting Information Systems. New York: Prentice
Hall.

