

1. DATOS BÁSICOS

Asignatura	Proyecto integrador: automatismos y control
Titulación	Grado en Ingeniería en Sistemas Industriales
Escuela/ Facultad	Escuela de Arquitectura, Ingeniería, Ciencia y Computación
Curso	2
ECTS	6
Carácter	Obligatoria
ldioma/s	Español
Modalidad	Presencial
Semestre	S2
Curso académico	25-26
Docente coordinador	Javier Fernández

2. PRESENTACIÓN

La asignatura "Proyecto integrador: Automatismos y Control" es una asignatura de carácter obligatorio dentro de la planificación de las enseñanzas del Grado en Ingeniería de Sistemas Industriales de la Universidad Europea de Madrid.

Los alumnos deben adquirir los conocimientos necesarios para entender la pirámide de automatización y conocer el funcionamiento de los sistemas de control. Esta asignatura forma parte de un proyecto integrador denominado "Construcción de un sistema mecánico automatizado" coordinado con la asignatura de Teoría de Máquinas y Mecanismos, en el que utilizando el aprendizaje basado en proyectos se trabajan aspectos como el acercamiento a las profesiones, el emprendimiento, la innovación tecnológica.

3. RESULTADOS DE APRENDIZAJE

Conocimientos

CON09: Conocimientos sobre los fundamentos de automatismos y métodos de control

Conocimientos específicos de la materia

Identificar los componentes de un sistema de control sencillo

Habilidades

HAB20: Capacidad para aplicar los fundamentos de automatismos y métodos de control

Habilidades específicas de la materia

- Analizar sistemas continuos sencillos
- Utilizar un PLC para controlar sistemas de eventos discretos
- Simular el comportamiento dinámico de sistemas continuos sencillos

Competencias

CP3: Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial.

CP9: Crear ideas nuevas y conceptos a partir de ideas y conceptos conocidos, llegando a conclusiones o resolviendo problemas, retos y situaciones de una forma original en el entorno académico y profesional.

CP13: Cooperar con otros en la consecución de un objetivo académico o profesional compartido, participando de manera activa, empática y ejerciendo la escucha activa y el respeto a todos los integrantes

CP14: Integrar el análisis con el pensamiento crítico en un proceso de evaluación de distintas ideas o posibilidades profesionales y su potencial de error, basándose en evidencias y datos objetivos que lleven a una toma de decisiones eficaz y válida.

4. CONTENIDOS

- Introducción a la regulación automática
- Instrumentación básica en los sistemas de control
- Sistemas de eventos discretos
- Señales y sistemas
- Introducción al control y regulación de sistemas

5. METODOLOGÍAS DE ENSEÑANZA-APRENDIZAJE

A continuación, se indican los tipos de metodologías de enseñanza-aprendizaje que se aplicarán:

- Clase magistral
- Aprendizaje cooperativo
- Aprendizaje basado en problemas
- Aprendizaje basado en proyectos
- Aprendizaje basado en enseñanzas de taller/laboratorio
- Entornos de simulación

6. ACTIVIDADES FORMATIVAS

A continuación, se identifican los tipos de actividades formativas que se realizarán y la dedicación en horas del estudiante a cada una de ellas:

Modalidad presencial:

Actividad formativa	Número de horas
Clases magistrales	10
Seminarios de aplicación práctica	15
Resolución de problemas	10
Elaboración de informes y escritos	5
Investigaciones y proyectos	40
Trabajo autónomo	60
Debates y coloquios	5
Pruebas de evaluación presenciales	5
TOTAL	150

7. EVALUACIÓN

A continuación, se relacionan los sistemas de evaluación, así como su peso sobre la calificación total de la asignatura:

Modalidad presencial:

Sistema de evaluación	Peso mín. %	Peso máx. %
Pruebas de evaluación presenciales	50	60
Caso/problema	5	15
Evaluación del desempeño	5	5
Investigaciones y proyectos	20	40

En el Campus Virtual, cuando accedas a la asignatura, podrás consultar en detalle las actividades de evaluación que debes realizar, así como las fechas de entrega y los procedimientos de evaluación de cada una de ellas.

8. CRONOGRAMA

En este apartado se indica el cronograma con fechas de entrega de actividades evaluables de la asignatura:

Actividades evaluables	Fecha
Ejercicios diagrama de bloques	Semana 2
Ejercicios de sensores y actuadores	Semana 4
Programas en lenguaje de contactos	Semana 6
Práctica de PLC	Semanas 8
Pruebas finales	Semana 9
Ejercicio modelado de sistemas continuos	Semana 10
Ejercicios de diagramas de bloques	Semana 12
Ejercicios de errores y realimentación	Semana 14

Práctica de Matlab y Simulink: modelado y simulación de sistemas continuos	Semana 16
Pruebas finales	Semana 17
Demostración funcionamiento y entrega Proyecto Integrador	Semana 18

Este cronograma podrá sufrir modificaciones por razones logísticas de las actividades. Cualquier modificación será notificada al estudiante en tiempo y forma.

9. BIBLIOGRAFÍA

A continuación, se indica bibliografía recomendada:

- K. OGATA, Ingeniería de control moderna. Tercera Edición, Editorial Prentice-Hall.
- R. DORF, Sistemas modernos de control, Editorial Addison-Wesley.
- Barrientos, Antonio, Control de sistemas continuos: problemas resueltos, McGraw-Hill.
- J. BALCELLS, J. L. ROMERAL, Autómatas programables, Marcombo Boixareu.
- A. PORRAS y A. PLÁCIDO, Autómatas programables: fundamento, manejo, instalación y práctica, McGrawHill.
- Piedrafita Moreno, Ramón, Ingeniería de la automatización industrial, RA-MA

10. UNIDAD DE ORIENTACIÓN EDUCATIVA, DIVERSIDAD E INCLUSIÓN

Desde la Unidad de Orientación Educativa, Diversidad e Inclusión (ODI) ofrecemos acompañamiento a nuestros estudiantes a lo largo de su vida universitaria para ayudarles a alcanzar sus logros académicos. Otros de los pilares de nuestra actuación son la inclusión del estudiante con necesidades específicas de apoyo educativo, la accesibilidad universal en los distintos campus de la universidad y la equiparación de oportunidades.

Desde esta Unidad se ofrece a los estudiantes:

- 1. Acompañamiento y seguimiento mediante la realización de asesorías y planes personalizados a estudiantes que necesitan mejorar su rendimiento académico.
- 2. En materia de atención a la diversidad, se realizan ajustes curriculares no significativos, es decir, a nivel de metodología y evaluación, en aquellos alumnos con necesidades específicas de apoyo educativo persiguiendo con ello una equidad de oportunidades para todos los estudiantes.
- 3. Ofrecemos a los estudiantes diferentes recursos formativos extracurriculares para desarrollar diversas competencias que les enriquecerán en su desarrollo personal y profesional.
- 4. Orientación vocacional mediante la dotación de herramientas y asesorías a estudiantes con dudas vocacionales o que creen que se han equivocado en la elección de la titulación

Los estudiantes que necesiten apoyo educativo pueden escribirnos a: orientacioneducativa@universidadeuropea.es

11. ENCUESTAS DE SATISFACCIÓN

¡Tu opinión importa!

La Universidad Europea te anima a participar en las encuestas de satisfacción para detectar puntos fuertes y áreas de mejora sobre el profesorado, la titulación y el proceso de enseñanza-aprendizaje.

Las encuestas estarán disponibles en el espacio de encuestas de tu campus virtual o a través de tu correo electrónico.

Tu valoración es necesaria para mejorar la calidad de la titulación.

Muchas gracias por tu participación.